ST102 Week 13

Common sampling distributions

Def. Let Z_1 , Z_2 , ... Z_k be independent $N_1 = 1D$, if $X = \sum_{i=1}^{k} Z_i^2$,

then $X \sim f_k^2$, with degree of freedom k.

RK. E(X) = k, Var(X) = 2k

2) For i.i.d. random sample $\{X_i\}_n^n$ from $N(\mu, \sigma^2)$, and sample variance S^2 , then $\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$

Reason?

Def. (t distribution)

Let $Z \sim N(0, 1)$, $X \sim \int_{X}^{2}$, $Z \perp \!\!\!\!\perp X$, then $T = \frac{Z}{\sqrt{X/K}} \sim t_{K}$

With degree of freedom k.

PK. E(T) = 0 for k > 1; $Var(T) = \frac{k}{k-2}$ for k > 2; otherwise not exists.

PK to has heavier tail than NIO, 1);
the tends to NIO, 1) as K/+ ao.

Prop. $(X, Y, N) = \{Y, Y, M\}$ all $f(X, A) = \{X, Y, M\}$ then $\sqrt{\frac{n+m-2}{n+m}} \cdot \frac{X-Y}{\sqrt{(n-1)}S_{X}^{2}+(m-1)S_{Y}^{2}} \qquad tn+m-2$

Def. UIV with $U \sim \chi_p^2$ and $V \sim \chi_k^2$. Then $F = \frac{U/P}{V/k} \sim F_{P,k}$

i.e., F distribution with degree of freedom (p.k).

PK. $E(F) = \frac{k}{k-2}$ for k>2,

Prop. 1) If FAFPL => FAFK,p

2) If T~ tk => T2~Fink

3> Sx Fn-1, m-1

for i.i.d. [X;], n & [T; 3, m from N(M, 02)

(C) Tao Ma All Rights Reserved