ST/02 Week 15

Settings: given an i.i.d. random sample {X; }, from some population with mean u and variance or Def. The least Squares Estimator (LSE) of Mis $\mu := \min \sum_{i=1}^{n} (X_i - \alpha)^2$ and actually $\hat{\mu} = \overline{X}$ Fact. $MSE(\hat{\mu}) := E[(\hat{\mu} - \mu)^2] = \frac{\sigma^2}{n}$ Quite often us can only approximate it. By CLT we know, when n is large, $\overline{X} \sim N(\mu, \frac{\alpha^2}{n})$ Then, $P(1.\overline{X} - \mu) = 1.96 \frac{\sigma}{\pi n}) \approx 0.95$ $\mathbb{P}(1:\overline{X} - \mu) \leq 1.96 \frac{S}{\sqrt{n}}) \approx 0.95$ Det. The estimated standard error of X is $E_{\mathcal{S}, \mathcal{F}}(\widehat{X}) := \frac{S}{m} = \left[\frac{1}{n(n-1)} \sum_{i=1}^{n} (X_i - \widehat{X})^2\right]^{\frac{1}{2}}$

Def. Let LID) = f(X1, ..., Xn; O) be the joint prob. (density) function of r.v.'s (-X; y). The maximum likelihood estimator of Q is $\partial = max L(0)$ RK. Log-likelihood : - los := ln[L10] RK. (Invariance Principle) If $\hat{\partial}$ is MLE of \hat{O} , the $\hat{\phi} = g(\hat{O})$ is MLE of $g(\hat{O})$. (Not as easy to understand as it looks) (c) Tao Ma All Rights Reserved