$ST/02$ Week 18 Two Types of Errors Truth Ho not rejected Peject Ho Ho U.S. H.
Ho Correct Type I error O. (2) $H_{\rm e}$ $H,$ Type II error Gorrect Def. (Power function) The power function of the test is β (0) = P_Q (Ho is rejected), for OE(D). $RK.$ For each $O \in \Theta$, we have $\beta(0)$ = 1- $\mathcal{P}(Type\text{Ierror})$ Tests for variances of Normals Given i.i.d. random sample ${}^f\!X_i{}^h\!f^h$ from N(μ , α^2). T_{ext} : H_0 : σ^2 = σ_0^2 us. H_1 : $\alpha^2 > \alpha_0^2$ Recall that $\frac{(n-1)S^2}{\alpha^2} \sim \gamma_{n-1}^2$, then, under Ho $\frac{(n-1)\sqrt{3}}{n_{e}^{2}}$ ~ χ_{n-1} Reject H. if $T > \chi_{n-1,d}^2$.

(continued) For any given $\alpha^2 > \alpha_0^2$, ie any specific case in Hi, we can calculate the power of the test at 0 by β $(o) = \mathcal{P}_o$ (Ho is rejected) = Pa ($T > \chi_{n-l, \alpha}^2$) $=$ Pa $\left(\frac{(n-1)\,\mathcal{S}^2}{n^2}$ > χ^{2}_{n-1} , a) = P_{∞} $\left(\frac{(n-1)\delta^{2}}{n^{2}} \frac{\delta^{2}}{\delta^{2}} > \gamma_{n-1}^{2}, \alpha\right)$ = $\mathbb{P}_{\alpha} \left(\frac{(n+1) S^2}{2^{2}} > \frac{C_{\alpha}^{2}}{R^2} \cdot \gamma_{n-1, \alpha}^{2} \right)$ $>\mathbb{P}_{\sigma}$ ($\frac{(n-1)\mathcal{S}^2}{\mathcal{S}^2}$ > $\gamma_{n-1,\alpha}$) = $\mathbb{P}(\mathbb{I}$ ype I error) Compare means of the Normals with paired data $\int (X_i, Y_i) y_i^R$, all independent, from $X_i \sim N(\mu_X, \alpha_X^2)$ and $T_i \sim N(\mu_{\Gamma}, \sigma_{\Gamma}^2)$. We want to test H_0 : μ_X : μ_Y ν .s. some H_1 Trick simplify the problem by letting $Z_i = X_i - i$, ieen Then we know ϵ ; $\sim N/\mu$, σ^2) with μ = μ x - μ y and $0^2 = 0^2 + 0^2$. The primary problem can be equivalently formulated as H_0 : μ = 0 ν .s. some H_i. t -test

(continued) For a specific μ = μ x- μ y >0 & one-sided test, $\beta'(M) = \int \mu(H_o \text{ is rejected})$ P_{μ} (T $>$ $t_{n-l, \infty}$) $T = \frac{1}{S/T}$ $= P_{\mu}(\frac{\sqrt{n}\bar{z}}{s} > t$ n-1, 2) = $P\mu$ $\left(\frac{\bar{z}-\mu+\mu}{s\sqrt{n}} > t^{n-1}, \alpha \right)$ = IP_{μ} $\left(\frac{\overline{z} - \mu}{\sqrt{s/\sqrt{n}}} > t_{n-1}, \alpha - \frac{\mu}{\sqrt{s/\sqrt{n}}} \right)$
follow t_{n-1} f ^{ϵ}*H* ω f _{n-1} $2 \left(\text{and } 7 \text{ if } n \right)$ What if not paired Given independent i.i.d. random samples (X_i) \wedge $N(\mu_X, \phi_i)$ and $\left(\gamma_{i}\right)_{i}^{m} \sim N$ (My, $0\overrightarrow{r}$) Test: Ho: $\mu_{\overline{X}}$, $\mu_{\overline{Y}}$, Some facts: $\frac{1}{12}$ $\frac{X}{Y}$, $\frac{S_X}{X}$, $\frac{S_Y}{Y}$ are independent 2) $X \sim N(\mu_X, \frac{\sigma_X}{n})$, $\frac{(n+1)\sigma_X}{\sigma_X} \sim \gamma_n$ 3) $\overline{Y} \sim N(\mu_{\Gamma}, \frac{\partial \overline{Y}}{n}), \frac{(m-1)S\overline{Y}}{\partial z^2} \sim \chi_{m-1}^2$ 4) \bar{x} - \bar{y} \sim N($\mu_{\bar{x}}$ - $\mu_{\bar{y}}$, $\frac{0\frac{2}{3}}{n}$ + $\frac{0}{n}$)

(continued) .
We can then have the test statislic as $T = (\bar{x} - \bar{y} - \mu x + \mu y) / \sqrt{\frac{Gx^{2}}{n} + \frac{Gy^{2}}{m}}$ ~ tn+m-2 $\sqrt{\frac{(n-1)\sqrt{3x}}{2x^2} + \frac{(m-1)\sqrt{3y^2}}{x^2}}$ / (n+m-2) Case I If $0x = 0y^2$ but unknown $T = \sqrt{\frac{n+m-2}{n+ m}} \cdot \frac{\overline{X} - \overline{Y} - (\mu_{X} - \mu_{Y})}{\sqrt{(n-1)\gamma_{X}^{2} + (m-1)\gamma_{Y}^{2}}} \sim t_{n+m-2}$ Case II. $v_{\tilde{x}}^2$ & $v_{\tilde{r}}^2$ known $T = \frac{\overline{x} - \overline{y} - (\mu x - \mu y)}{\sqrt{\frac{Dx^{2}}{2}} + \frac{Dy^{2}}{2}} \sim N(0, 1)$ Test for correlation coefficients Def. (Correlation Coefficients)
 $\rho = \text{Corr}(X, Y) := \text{Cov}(X, Y)$
 $\text{Var}(X) \text{Var}(Y)$ Def. (Sample correlation coefficients) $\beta = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})}{\left[\sum_{i=1}^{n} (x_i - \bar{x}) \sum_{i=1}^{n} (y_i - \bar{y})^2\right]^{\frac{1}{2}}}$ for paired data

(continued) Now we want to test H . ρ = 0 V s. some H It can be proved that $T = \beta \sqrt{\frac{n-2}{1-\beta^2}}$ \sim $tn-z$ Test for the ratio in variances of two Normals Given i.i.d. random samples $(X_i)''$ from N/μ_X , O_X^{2}) and $\int Y_i y^n$ from $N(y_1, 0^2)$. We want to test H_0 : $\frac{C_1^2}{\sqrt{m^2}}$ = k $V.S.$ $H_1: \frac{C_1^2}{\sqrt{m^2}}$ #k (some k > 0) We then know $\pi = \frac{\sqrt{3x^2} / \sigma_x^2}{\sqrt{3x^2} / \sigma_y^2}$ \sim $F_{n-1, m-1}$ © Tao Ma All Rights Reserved