ST/oz Week 19 Analysis of Variance (ANOVA) <u>One-way ANOVA</u> Given k independent random samples, ie for $j \in Lk$], i.i.d. random sample $\{X_{ij}\}_{i=1}^{n_j}$ from $N(\mu_j, \alpha^2)$ Test: H_0 : μ_1 = μ_2 = ... = μ_k H_I : not all μ_j 's are the same Some definitions: 1) The j-th sample mean: $\overline{x}_j = \frac{1}{n_j} \sum_{i=1}^{N} X_{ij}$ 2) Overall sample mean: $\overline{X} = \frac{1}{n} \sum_{j=1}^{n} \sum_{i=1}^{n_j} X_{ij} = \frac{1}{n} \sum_{j=1}^{n} n_j \overline{X}_{ij}$ where $n = \sum_{i=1}^{k} n_i$ 3) Total variation: $\sum_{j=1}^{k}\frac{n_{j}}{i^{2j}}(\mathbf{x}_{ij}-\overline{\mathbf{x}})^{2}$ with $df=n-1$ 4) Between-groups variation: $B = \sum_{j=1}^{K} N_j (\overline{X}_{.j} - \overline{X}_{.j})^2$, df=k-l 5) Within-groups variation (residual sum of squares): $W = \frac{1}{2} \sum_{i=1}^{N} (X_{ij} - \overline{X}_{.j})^2$, df = n-k

6) Total variation / total sum of squares $\sum_{j=1}^{k} \sum_{i=1}^{n_j} (X_{ij} - \overline{X})^2$ 7) The ANOUA decomposition : Total variation = $B + W$. 8) Equivalent forms : Total variation = $\sum_{i=1}^{k} \sum_{i=1}^{n_i} X_{ij}^2 - n\overline{X}^2$ $B = \sum_{i=1}^{K} n_j \overline{X}_{j}^{2} - n \overline{X}^{2}$ $W = \sum_{i=1}^{K} \sum_{i=1}^{n_i} X_{ij} - \sum_{i=1}^{K} n_i \overline{X}_{ij}$ $=$ $\sum_{j=1}^{5} (n_j - 1) S_j^2$ Under H_0 , it can be shown that: $F := \frac{\sum_{j=1}^{k} n_j(\overline{X}_j - \overline{X})^2/(k-1)}{\sum_{j=1}^{k} \sum_{i=1}^{n_j} (X_{ij} - \overline{X}_j)^2/(n-k)} = \frac{B/(k-1)}{W/(n-k)} \sim F_{k-1,n-k}$ Reject Ho if $f > F_{k-1,n-k,d}$ (Fajk-1, n-k). One way ANOVA table <u>Source</u> DF SS MS F $B/(K-1)$ $W(n)$ <u> P-value</u> Factor $k-1$ B $B/(k-1)$ $\frac{W(n-k)}{W(n-k)}$ P Error $n-k$ W $w/(n-k)$ $Total \mid n-1$ B+w

Without further assumptions, we also have: 1) estimator of $0²$: $0¹ = S = \sqrt{\frac{W}{n-k}}$ $2)$ d /00 $/2$ - confidence interval for μ_j . \overline{X}_j t t $\frac{d}{dx}$, $n-k$ $\frac{N}{\sqrt{n_1}}$ for $j \in K$] A system view of one-way ANOVA $x_{ij} = \mu + \beta_j + \varepsilon_{ij}$ for $i \in \mathbb{C}$ nj and $j \in \mathbb{C}$ k], with ϵ_{ij} \wedge N (0, α^2), all independent. βj ⁰ is required for identifiability μ is the average effect and β_j the j-th level treatment effect H_0 : $\beta_1 = \beta_2 = \cdots = \beta_k = 0$ <u>Tuo-way ANOVA</u> $X_{ij} = \int_0^1 t^j \delta_i \delta_i + \beta_j \delta_j + \epsilon_{ij}$ for $i \in I$ and $j \in I$ µ average treatment effect βj treatment column levels Ji different block row levels Eij : follow $N(o,o^2)$, all independent

Conditions for identifiability $\frac{2}{i} \overline{\partial} i = \frac{2}{j} \overline{\beta} j = 0$. Two directions H_0 : $\beta_1 = \beta_2 = \cdots = \beta_c = 0$ $H_0: J_1 = J_2 = \cdots = J_r = 0$ Some definitions 1) i-th block sample mean: $\overline{X}_i := \frac{1}{C} \sum_{j=1}^{C} X_{ij}$ 2) j-th treatment sample mean: $\overline{X}_{j} = \frac{1}{r} \sum_{i=1}^{r} X_{ij}$ 3) overall sample mean: $\overline{X} = \frac{1}{n} \sum_{j=1}^{\infty} \sum_{i=1}^{n} X_{ij}$ 4) total variation : Total $SS = \sum_{i=1}^{K} \sum_{j=1}^{C} (X_{ij} - \overline{X})^2$, dt=rc-1 5) between - blocks variation: $B_{row} = C \frac{E}{i} (\overline{X_i} - \overline{X})^2$, df = r-1 6) between-treatments variation: $B_{od} = F \frac{E}{i^2} (\overline{X}_{i1} - \overline{X})^2$, of = C-1 7) residual sum of squares: Residual $SS = \frac{2}{n} \sum_{i=1}^{n} (X_{ij} - \overline{X}_{i} - \overline{X}_{j} + \overline{X})^{2}$ $df = (r-1)(c-1)$ 8) two-way ANOUA decomposition. Total SS = Brow + Bcol + Residual SS

Equivalent forms: Total SS = $\sum_{i=1}^{n} \sum_{j=1}^{S} X_{ij}^2 - rc \overline{X}^2$ $B_{row} = c \sum \overline{X_i}^2 - r c \overline{X}^2$ \mathcal{B} col = $r \sum_{j=1}^{n} \overline{X}_{.j}^2 - rc \overline{X}^2$ Residual SS = Total SS - Brow - Bcol Case $I: H_{\circ}: \gamma_1 = \gamma_2 = \cdots = \gamma_r = 0$ $F:=-B$ row $(r-1)$ $Residual$ ΔS \neq $C(r-1)$ $CC-1$ S \subseteq $Residual$ ΔS $C-IJBrow$ Under H_0 , $\bar{f} \sim \bar{f}_{r-l}$, $(r-1)$ (c-1) reject Ho if $f > F$ d; $r-1$, $(r-1)$ $(c-1)$ Case \bar{L} : Ho: $\beta_1 = \beta_2 = \cdots = \beta_c = 0$ $F :=$ $\frac{1}{2}$ $\frac{1}{$ $Residual$ SS $/$ C c r -1) cc -1 5 Residual 35 Under H_0 , $F \sim F_{c-1}$, $(r-1)(c-1)$. Reject Ho if $f > F$ d; c-1, cr -1) cc-1) Two way ANOVA table Source DF SS MS F p-value R_{OW} factor $\begin{array}{|l|} \hline r-1 & B$ row Brow $(r-1) & (C-1)$ Brow $\mathbb{R}^{S}S$ p,
Column factor $\begin{array}{|l|} \hline c-1 & B \text{col} & B \text{col} \end{array}$ (c-1) $\begin{array}{|l|} \hline r-1 & B \text{col} \end{array}$ Column factor $Residual$ $(1-1)$ $(2-1)$ Residual SS B $rac{2}{\sqrt{2}}$ Bal _{/ RSS} Total re 1 Total SS

Remark on residuals: By model we have $X_{ij} = \mu + \delta_i + \beta_j + \epsilon_{ij}$ While from clata we have the decomposition. X_{ij} = \overline{X} + (\overline{X}_i - \overline{X}) + (\overline{X}_j - \overline{X}) + (X_{ij} - \overline{X}_i - \overline{X}_j + \overline{X}) \Rightarrow $\hat{\mu} = \overline{x}$ $\hat{\delta}_i = \overline{X_i} - \overline{X}$ $\beta_j = \overline{X}_{j} - \overline{X}$ $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})$ and the contract of the contrac $\overline{\mathcal{E}}_{ij} = \overline{X}_{ij} - \overline{X}_{i} - \overline{X}_{j} + \overline{X}$ (C) Tao Ma All Rights Reserved