$ST/$ 02 Week 20 Simple Linear Regression Problem settings Given paired observations $f(x_i, y_i)$ y_{i-1} from model $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$ with $E(\mathcal{E}_i)=0$, Vietri and Var (\mathcal{E}_i) = $\alpha^2>0$, Vietri Also assume $Cov(\epsilon_j, \epsilon_j)$ =0 for all $i \neq j$. Here we focus on "fixed design" (then what is a "random design"?) $\left\{\frac{1}{2}, \frac{1}{2}, \$ $Parameters$ to understand: β , β , α^2 . $Fact: D E(y_i) = \beta_0 + \beta_1 x_i$, $Var(y_i) = \alpha^2$, and all yi's are uncorrelated. 2) If $\mathcal{E}_i \wedge N(0, \infty^2) = 5$ $\mathcal{Y}_i \wedge N(\beta s \neq \beta, x_i, 0^2)$. and Yi's are independent. LSE of parameters Define the lass function: $L(\beta_{0},\beta_{1})=\frac{1}{2}\sum_{i=1}^{n}\sum_{i=1}^{n}(\gamma_{i}-\beta_{0}-\beta_{i}x_{i})^{2}$

Then let's find the minima of L: $\frac{\partial}{\partial \beta_2}$ L(β_0 , β_1) = -2 $\frac{\sum_{j=1}^{n}(y_j - \beta_0 - \beta_1 x_j)$ (1) $\frac{\partial}{\partial \beta_1}$ L(β_0 , β_1) = -2 $\sum_{i=1}^{n}$ X; (y_i , $\beta_0 - \beta_1$ X;) (z) $f(t)=0$ => $\beta = \bar{y} - \beta \bar{x}$
(2) = 0 $\beta_1 = \frac{Z_7}{Z_1} (\frac{x_7 - \overline{x}}{y_1 - \overline{y}}) (\frac{y_7 - \overline{y}}{y_1} - \frac{\sum_{i=1}^{7} x_i y_i - n \overline{x} \overline{y}}{x_1^5 - \overline{x}^2 - n \overline{x}^2})$ $\sum_{j=1}^{z}$ $(x_j - \overline{x})^2$ $\sum_{j=1}^{z} x_j^2 - n\overline{x}$ What about the estimator of α^2 : $\frac{2}{\pi}$ (g_i - β - β , x,)²
 $n - 2$ Properties of estimators $1) E(\beta -) = \beta_0$ $Var(\hat{\beta}_{\circ}) = \frac{\sigma^2}{n} \sum_{\substack{i=1 \ i \neq j}}^{n} x_i^2$ 2) $E(\hat{\beta}) = \beta$ $Var(\hat{\beta}_1) = \frac{\sigma^2}{\sum (x_i - \overline{x})^2}$

Inference for parameters in the case of Normal Further assume: $\frac{\varepsilon_i}{i \cdot id}$. $3 = 3$ Yi $\sim N(s$ ² s , λ i, σ ²) and *Yi's independent*. In addition, $\beta_o \sim N(\beta_o, \frac{\alpha^2}{n} \frac{\sum_{i=1}^{N} x_i^2}{\sum_{i=1}^{N} (x_i - \overline{x})^2})$ β i ~ N β $\frac{1}{2}$ w_i th $\alpha^2 = \frac{\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2}{n}$ $n - 2$ The estimated standard errors E.S.E. $(\beta_0) = \frac{\partial}{\sqrt{n}} \left(\frac{\sum_{i=1}^{n} x_i^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2} \right)^{\frac{1}{2}}$ $E.S.E. (\hat{\beta}) = \frac{\hat{\sigma}}{\int \hat{Z} \cdot (x)}$ $(X; - \times)$ ² d_{emmn} 1) $\frac{(n-2)\sigma}{\sigma^2}$ \sim π^{-2} 2) β 11 α ², and β - β 1 α tn-2 E .S.E.I β b.

(continued) 3) $\beta I \perp 0^{-4}$, and $\frac{\beta' - \beta}{2}$ $E.S.E.$ $\cancel{(}^\mathcal{B}$ $\mathcal{L}n$ -a Confidence Intervals $(1 - d) \times 100%$ confidence interval for β o is β_0 + $t_{\frac{d}{2}, n-2}$ $E.S.E.\beta_0$ ¹ ^d ¹⁰⁰ confidence interval for β is $\hat{\beta}$, <u>t</u> t<u>o</u>, n-2 E.S.E. (β) Test the slope H_0 $\rho_1 = b$ $v.s.$ H_1 : ... $\mu = \frac{\beta_1 - \beta_2}{\beta_2 - \beta_1}$
E.S.E.(β β i tn-2 under Ho Verification by MLE (still assume Normal) $L(\beta_0, \beta_1, \alpha^2) = \frac{R}{i^2} \frac{1}{\sqrt{2\pi\alpha^2}} \exp\left\{-\frac{1}{2\alpha^2} (y_i - \beta_0 - \beta_1 x_i)^2\right\}$ $f(x) = \left(\frac{1}{x^{2}}\right)^{\frac{n}{2}} exp\left(-\frac{1}{2x^{2}}\sum_{i=1}^{n}(y_{i}-\beta_{i}-\beta_{i}x_{i})^{2}\right)$

(continued) Then we can further have the log-likelihood: l (β_D, β₁, 0²) = <u>n</u> $ln(\frac{1}{0^{2}})-\frac{1}{10^{2}}\sum_{i=1}^{n}(y_{i}-\beta_{0}-\beta_{i}x_{i})^{2}$ +c Which part is flexible? How to maximize it? (C) Tao Ma All Rights Reserved